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1. INTRODUCTION

1.0 OBJECTIVE

The primary objective of this study is to develop the Finite Ele-
ment Method (FEM) for electromagnetic techniques to solve the problem of
transient scattering directly in the time domain. The techniques will
then be applied to compute the time-dependent currents induced on straight
thin wires due to an incident plane wave Gaussian pulse.

1.1 Relevance of the Study

Transient electromagnetic response of structures such as strategic
weapon systems and strategic command, communication and control systems to
a nuclear electromagnetic pulse are of great concern from the point of
view of their vulnerability and survival. Again, the importance of tran-
sient response cannot be overstated in radar target identification, elec-
tronic warfare and electronic countermeasures. For example, the impulse
resoonse can give a useful characterization of each radar target since
such a response contains all necessary radar information in a compact and
understandable form. Strategic systems should be designed to survive the
nuclear transients. Thus, an understanding of the response becomes manda-
tory to impact on and improve the designs of systems. Since the systems,
in general, are complicated structures, they can only be solved numeri-
cally; hence efficient and economical numerical techniques are required.
The method developed in this study is expected to offer such a tool.

The approach is based on a unique technique for the computation of
currents and fields on arbitrary structures excited by arbitrary sources.
This technique called "Finite Element Method for Electromagnetics (FEMEM)"
predicated on a variational principle governing the physics of the problem
and an approximation procedure to carry out the variational expression
integration.

1-1




1.2 A General Discussion of Transient Solutions

There are essentially two approaches for solving linear electro-
magnetic problems. One is an indirect approach in which the physics of
the problem is abstracted either by a differential or by an integral equa-
tion with frequency as the variable. The equations are solved in the fre-
quency domain and then the time domain solution is obtained by inverse
Fourier transform. In the other approach, the governing equations are
formulated and solved in the time domain.

In the time domain, the problem can be formulated either in terms
of differential or integral equation. From a numerical solution point of
view, the integral equation approach offers definite advantages over the
differential equation approach with respect to solution stability and
imposing boundary conditions.

1.3 The Finite Eiement Method in the Transient Domain

The finite element method has been successfully applied to a host
of static or steady state problems, including eigenvalue problems through-
out the many engineering disciplines. The extension of the method to
transient problems may be credited to Wilson and Nickell[ll in their study
of the heat conduction equation. Most of the early papers in this area
concerned solutions to the diffusion equation in one form or another.
Although the wave equation has been considered generally by Oden[Z] there
appears to be no specific solutions to this equation for transient prob-
lems. 1In general, three different approaches are used in solving the

time domain problem in conjunction with the FEM. They are:

(1) In this method, the transient solution is obtained by develop-
ing a recurrence relation with the ordinary finite element equations for
the problem and then time-stepping progressively. This technique will be
further discussed later.

(2) This method depends on the idea of incorporating the time
dimension directly into the finite element analysis as another one of the
unknown nodal degrees of freedom of the systems. In this manner, time is
discretized, as well as the spatial variables. Here the time span of




interest is divided into finite elements. Thus, the initial value prob-
lem is converted to a boundary value problem. Solutions for all intervals
of time are obtained simultaneously, with nodes on each wire or surface

t = constant defining the configuration of the system at that time. The
increase in problem size due to the added time dimension is a disadvantage.

(3) In this approach, the solution is obtained by the mode super-
position method. This technique is also known as the normal mode method
or as modal analysis. The basis of this method is that the modal matrix
of the eigenvalue problem can be used to diagonalize the problem and thus
decouple the multiple degrees of freedom problem to give several one-

degrees of freedom problem.

One advantage of the mode superposition method over the direct
integration methods is that it reduces the number of equations to be
solved. Since the lower normal modes play a more significant role in the
response than the higher modes, only the lower modes need to be used.

This method has the disadvantage of requiring the eigenvalue problem solu-
tion. Again, if the number of degrees of freedom is large, the eigenvalue
problem is difficult. Superposition method is applicable only to linear
problems. Thus, it transpires that the modal superposition method is less
general than the other two methods mentioned earlier.

However, it must be mentioned that the advantages inherent in the
finite element formulations can be profitably used in all three methods.
This report primarily concerns itself with the first method. The subse-
quent sections discuss the problem formulation, FEM methodology, code

B development, numerical solutions, discusssions, conclusions and
recommendations.
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2. MATHEMATICAL FORMULATION

2.0 FORMULATION OF THE VARIATIONAL INTEGRAL

The application of the FEM technique requires that we select the
proper variationai principle for the posed problem, express the functional
involved in terms of approximate assumed current distribution functions
which satisfy the boundary conditions and minimize this functional to
obtain a set of governing equations which is then solved for the unknown
current distributions at the nodes.

Figure 2-1. Geometry of the Problem

The wire is illuminated by a plane electromagnetic Gaussian pulse Ei(t)
with arbitrary polarization and angle of incidence.

Here the relations will be developed for general validity. Then,
these will be specialized to the problem at hand. Let | (F,t) be the
induced current on the perfectly conducting structure. The boundary
condition applicable at the surface of a perfectly conducting body is
given by

nxElanx B +E) =0 (2-1)

=1

- -»> -,
where n is unit normal to the surface and Et, E' and E° are the total,
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~2§ incident and scattered fields, respectively. This implies that the tan-
gential electric field is zero.

>
The variational form functional L(J) gove:ging the physics of the
problem and containing the quantity of interest J is given by

= f £ J(#,t) - K (F%st) - T (rit) dr dr-
./:-JS' r dar
(2-2)
-zf T iee - B e
S

where./g and.)gldenote Cauchy principal value integrations over the struc-
ture and dr and dr' differential elements. The Kernel R'(:,:',t) is a
complicated integro-differential operator and is given by

' K (FFit) = o {°—3~ L . S T K—f X -t B
: ax i ¢ 2 e ) dt ¥ e Tat-2

(2-3)

where Uye € and n, are free space permeability, permittivity and impéd-
>
ance, respectively; R = Y- ?', the vector distance between the observa-

in the source coordinates; ¢ » t -<% is the retasﬁed time. It is easily
seen that the variation of L(J) with respect to J leads to the time domain

& |
E tion point v and the source point F'; V - denotes the divergence operation
| ? electric field integral equation.

(2-4)

o 0 T

Now that the variational form is set for the problem, the remain-
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der of the FEM technique is a procedure for rendering L(J) stationary by
using an expression for J.
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2.1 Solution of the Variational Integral Equation by the Finite
Element Method

The FEM is primarily a numerical procedure for solving complex prob-
lems. The method was originally used in the field of structural mechanics;
but since its roots belong in mathematics as a class of approximation pro-
cedure, it can be applied to a wider variety of problems in other areas.

In the FEM, the region of interest is divided into sub-domains or finite
elements, with some functional representation of the solution being
adopted over the elements so that the parameters of the representation
become unknowns of the problems. Usually the element parameters are the
nodal values and their derivatives at the nodes. Although the region of
the problem is discretized into elements, the whole domain remains as a
continuum because of the imposed restriction on the continuity across ele-
ment interfaces. The mathematical procedure of solving (2-2) by the FEM
is discussed in the following sections.

2.1.1 Segmentation in the Space and Time Coordinates

Examination of Eq (2-2) shows that the source current at r delayed
by a time |r -~ r'|/c is affecting the current at the observation point r.
Because of this retardation effect, Eq (2-2) can be solved as an initial-
valued precblem by using a time marching procedure. This phenomenon can
best be visualized by considering the space-time diagram as shown in
Figure 2-2.

ct b 8 37{;

~{AG—

space

Figure 2-2. The Space-Time Diagram




In the space-time diagram each dot represents a space-time point; the

solid lines are the characteristics of the wave equations and they separate
the past and the future. To divide the current into the space and time
coordinates, we expand the current in space and time as

> NS ®© o = > -+
J(rat) = 3 3 Iy (F - ¥, b - t) U(F - ¥ U - ty)
=1 j=1

B e e e st e —

(2-5)
A

+' _-* _S_
i -?1)=’1 if |F - Fl<s

0 otherwise

(2-6)

A
,1 1t - bl s 5
U (t-t)=
J

0 otherwise i

| with Ag and Ay as the spatial and temporal increments and J1j represents
: the current value within the space segment i and time interval j. There-
fore if one postulates that the incident field and all surface current on
S are known or equal to zero for al! time less than, say to, then

the retarded time effect allows us to start the solution at time to and
to view the integral equation as an initial-valued problem in a "marching
on" procedure in time.

2.1.2 The Subdivision of the Spatial Region (A Generalized Approach)

The region R is subdivided into discrete sub-rugions or elements, ;
each of the same gereral form, as shown in Figure 2-3, with the boundaries
of each element being plane or curvilinear faces, and with the adjacent

boundaries of any pair of elements being coincident. Commonly used ele- g
I ments for surfaces are triangular or polygonal form. At similar positions |
in each element, a number of points are identified as nodes. They are
generally at the vertices of the elements, and at positions such as the
center of an edge, the centroid of a face or the centroid of the element
volume.

h

Let us denote the nodal values of the solution ¢ at the pt node as

¢p’ Let the number of elements into which region R is subdivided be Nt,
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,1; and the total number of nodes in R = D + B (Boundary) be Ny and Ny, - The

Total number of nodes in a single element be n Then the nodal values of

s
¢ can be generally expressed as a column vector

= -
¢
$2
Lo} =| ¢, (2-7)
d
¢
ng + Ny
1 o

2.1.3 The Element Shape Function

To solve Eq (2-2) by the FEM, one needs to define some shape func-
tions or interpolation functions. These functions allow us to express the
solution ¢ at any position of R in terms of only the nodal values {¢}.
Therefore, we assume that the solution ¢ can be described in functional
forms, element by element, across the region, i.e., can be defined piece-
wise over the region. Within each element, it will be supposed that ¢ can
be described by a linear combination of functions N e’ Nze, i s N e.

-t Nse, and nodal values ¢1e, ¢2e, o 5 e i ¢ke e e ¢se, thus

- e e e e e ¢ e e e e
"'24 Nl 4 +N2 2 +Na L2 +"'Nk % +"’+Ns L

; (2-8)
or, in matrix notation
25 e LA AR LR N B (2-9)
e
= Z (ﬂe) {;O_e’} ’ (2-10)

)
Note that the superscript e is used here to identify a particular element.

The shape functions (ﬂ?) are restricted to being functions of posi-
tions. Since the true solution ¢ is prescribed as being continuous and
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with continuous derivatives (up to some order) across the regicn, the piece-
wise representation (2-10) should have the same properties. Therefore the
shape functions are restricted by the following conditions:

1. BE =1 at the jth node

J
2 =0 outside element e, with the jth node
as one of its nodes
3. = N(r), a position function within the elements.

In choosing the shape function, one has to pay attention to convergence in
the FEM. Since it is recognized that the FEM solution to a problem with a
given size of element is necessarily an approximation to the exact solu-

tion, there must be an assurance that successive finite element solutions
using smaller and smaller elements will converge smoothly to the exact
solution as the element size tends to a point. While comprehensive condi-
tions ensuring convergence are not yet known for all types of linear problems,
there are certain criteria that must be observed in order to obtain conver-
gent solutions:

(1) Completeness

This means that the piecewise representation (2-10) within the
element of the variable/derivative in a key integral must be capable of
representing any continuous function as the element size decreases.
Mathematically, the piecewise representation calls for a complete set of
functions such as a polynomial function with infinite number of terms.
However, in a FEM representation, only a finite number of terms is taken.
But as pointed out by Melosh [5] and by Zienkiewicz [6], a monotonic con-
vergence can still be obtained if the number of terms used in the repre-
sentation allow the variable/derivative up to and including order t to
take up any constant value within the element, where t being the highest-
order derivative of the variable in the variational functional.

(2) Compatibility

This means that the representation of the variable/derivative in a
key integral of (2-4) must tend to the same continuity as the exact solu-
tion, across the inter-element boundaries, as the size decreases to a point.
If for a given variational functional, the highest-order derivative

Siesgnatii,




involved is of order n, the derivatives of order up to and including

(n-1) are known as the principal derivatives of that variable. Presuming
that the exact solution of the dependent variables are continuous with
continuous derivatives up to at least order n. One weak requirement that
the compatibility criterion is satisfied is to require that the variable
and their principal derivatives are continuous in the shape function
representation. This means that the highest-order derivative in a key
integral will have a representation that is at worst piecewise continuous,
in which case the representation will tend to be continuous as the element
reduces to a point. In general, completeness and compatibility are suffi-
cient conditions for convergence in variational finite element methods.
However, these conditions are very strong and can be relaxed [7]. In
practice, the shape functions will not be an exact representation of the
true solution, but an approximate one, and the solution obtained will be

similarly approximate.

2.1.4 The Subdivision of the Functional

1 Since (2-2) represents essentially a quadratic function, we can
write it as

¢ = j'; F(ul,uz,us Ea s Ud) dD , where (2-11)

Flu ,u,u ... ,uUu)=a u2+a uwu+a uwu
( o il » Ug) 31 2 12 1 2 13 1 2

(2-12)

+a + 24+.,.. + 2
21 Y2 Uy T3 Y, 34d Y4

and D represents the domain of integration which can be a 1ine, surface or
’ volume, and UpsUysUy oo o 5y represent the solution ¢ and its various
1 derivatives, ¢, Ogys by ¢ - - In matrix notation (2-11) becomes

' ® -f {u}T[A] {u} dD (2-13)
' D
4 where [A] is a dxd matrix and {u} a dx1 column vector, or

— —

aa....ald

[A] =| 321 32, 35 (2-14)




{u} =| 2 (2-15)

—

and superscript T denotes the transpose of a matrix. In general, the
matrix elements aij are functions of the position.

If ¢% is the contribution of an element to the total integration in
(2-13), then this equation can be written as

L 2
EDIEDD f ' [A] (u) do, (2-16)
D

e=] e=]

where De represents the domain of element e, let us now consider a typical
T term u in {u} r =0, 12 . . » «» « By Gafinition, u. is a spatial

derivative of ¢, that is u. = E!F = Dr” where Er represents a spatial
(13

variable of concern.

From (2-10) we have
u-= (Ne) {¢%} in element e.
Thus within element e
u. = 0.6 = (0, N°) (6% = (U.°5) (4%} (2-17)
where (Ure) represents the row vector for the r-derivative of the shape
function. So applying (2-17) for every element, we obtain

cqu} = (U) (4% (2-18)
where - -

e e

v,® o, n* P %y D, N,

] u,° D, N, D, N,° D, N*
l [v] - : : (2-19)

e

Dd Ns




e NN A

Substitution of (2-18) into (2-13) yields

L
¢ = é fo (%7 101" [A] [V] (4% a, (2-20)
e

which shows that ¢ is now a function of the ng nodal values Oy 0 ¢ -

.
N4

2.1.5 The Stationary Condition
In order to solve (2-20) we have to invoke the variational princi-

ple. The condition that ¢ is stationary is given by

30 _ 3¢ _ 3¢ _ - 00 " f
3¢1 %, 8¢3 o e 5;;; o , (2-21) g
or
ao/a¢l
ao/a¢2
G AR :
37 . {0} . (2-22)
30/%¢
N4
From (2-16) we get
L e
30 E
p Y1 Y - (2-23)

e=1

2.1.6 The Element Matrix Equation

To get the element matrix equation we have to combine (2-23) and

e
(2-20). Considering the term %%3T for an element e in (2-20), we get

20" 3 [ .7 sant e ]
= —— (¢} [u]" [A] [u] {¢)]|dD_ . (2-24)
3{¢e} _/[;e a“e} ¢ [ ¢ e (
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Note that a term %%E- will be zero unless p is one of the element nodes
identified by 1, 2, . . . k, . . » S. Also note that the node identifiers
1, 2, 3, . . 5, s are not the same as the system node numbers which are
used to represent the total number of nodes in D. For example, if the
triangular element e has its three vertices identified in the system node
numbers as 7, 9, and 5, then we can let its node identifiers (now s = 3)
as 1+ 7, 2+ 9 and 3 « 5. Therefore, the only elements in the column
vector that are non-zero are those that, in terms of element node identi-
fiers, are

2% a0t 20°

So (2-22) reduces to

ao/a¢1e
e
L 20/2¢,° ( (2-25)
o {¢} .
.y
ao/a¢s
Letting
(8] = [uI" [A] [u] , (2-26)
and using
’a"%VT T [Q1 v} = 2[qQ] (Y} , (2-27)
we obtain from (2-24)
e
3¢ 1 e
= 2 2-28
r fDe [A'] (4% dn, (2-28)
where [Al] is a s x s matrix .

Since {¢e} is constant with respect to the integration we can write (2-28)
as

e
2 - [a*] (4% (2-29)
(¢}




where
[A'e] = fDe 2[A®) R (2-30)

If we substitute (2-19) into (2-24) and carry out the mathematics, we will
obtain for the ijth element of [B®] as

e e e e
by './; g [Dlui By B B F By ¥ e SR By 8y)
e

e e e e
+ Dy Ny (ad1 D, Nj *ag, D, Ny~ + ...+ ayy Dy Nj )] d, .
(2-31)

Note that in (2-31) the subscripts on the N® are in terms of the node
identifiers, not system node numbers.

Note that the shape functions are explicitly defined functions of
spatial variables. The integrand of a particular term, say

fo : 200, N;%) a,,(O,N;®) db,

could be evaluated as an explicit function of x, y and z. If aij are con-
stant coefficients, the prescribed integration over the defined domain De
of the element would, in consequence, evaluate the term as a scalar. The
integration, if simple, could be carried out analytically. However, if °

ay; are complex functions of x, y and z, then the integration would gener-
ally require a numerical solution. Therefore, the computational time
involved in a problem depends very much on whether aij are simple or com-
plex functions.

2-12




2.1.7 The Boundary Condition

It is known in boundary-value problems that the solution is not
unique unless it meets all the required boundary conditions. However, in
the variational finite element methods, if the specified boundary condi-
tions are natural boundary conditions for the problem, then it can be shown
that the class of admissible functions is not required to satisfy these.

In order to illustrate the treatment of the boundary condition in the
matrix equation (2-29) let us assume a Dirichlet boundary condition such
that

¢ = g(x,y,z) on B. (2-32)

Using (2-32), the n, nodal values (¢p)B for the boundary nodes on B can be
calculated yielding Ny equations of the form

¢, \ g |
|
¢, g
(0’0’0’ 00.0,1 ,0’ oo 0) 0p > g (2-33)
4 1
pth Position f
¢ g
ny / , |
which implies that if ¢p satisfies the boundary condition and hence it is
e
a constant value, then %%— = 0 for an element containing node p. Thus to
p

include the B.C. in the element matrix equation, the simplest procedure is
to replace the pth row of the matrix [Al®] in (2-29) by the row matrix of
(2-33). In other words, if p is a boundary-condition node, put zeros in

the pth row of the [A1€] in (2-29) except for a 1 in the diagonal position

and put in the pth row of the driving vector the boundary value given by
(2-32).
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3. THIN WIRE SCATTERING

3.0 APPLICATION OF THE FEM TO THE SCATTERING OF A GAUSSIAN PULSE BY A
THIN CONDUCTING WIRE
The geometry of the problem is given in Figure 3-1. A perfectly
conducting cylindrical wire of length £ and radius a is located in free
space as noted before.

¢
z=2 N
I
=1
AZ
/’ 1-—
A~ p '
5 ,:6‘\_ J
+\/. ]
E . ¢30
9,
IR aa (b)
t
2a

Figure 3-1. (a) Geometry of Thin-Wire Scatterer
(b) Subdivision into Finite Elements

The wire is il]uminated by a plane electromagnetic Gaussian pulse,

B SR
el (t) = §, having its E vector a]ong § and angle of inci-

dence @, where § is a unit vector perpendicular to k the propagation
vector, P is the spread parameter and t x° the time at which the pulse
reaches its maximum value. Since the wire is thin (— << 1), we can use
the thin-wire approximation and assume that the current flows only in the
z direction. Therefore, the variational equation (2-2) for the thin-wire
is reduced to
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and R = |z - 2'| = J(z - z')2 +a%2 (3-2)

To convert the integral equation we first divide the straight wire into N
uniform segments with N" number of nodes, and then express the current at
any point lying inside a particular segment in terms of a shape function
and the nodal values of that segment. Thus from (2-4) we have, after drop-
ping the subscript z

S ©
Ii(z',t') =ZE I'ij (2" - z4, t* - tj) U(z' - zy) Ut - tj)

i=1 =1 (3-3)
1t [zh-x) 2 Az
with u(z' - zi) = {
o otherwise
: At
1 N ) ot ] I
u(t -t.)={ | B4 y
J o otherwise
where Iij represents the shape function at the 1th segment and the jth
time interval. For a given time interval, say |t' - t,| 5_%5 '

Iij(z' -z - tj) is a function of space only. Therefore we can express
the shape function Iij in terms of spatial coordinates.
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3.1 Spatial Shape Function

For the one-dimensional problem, we can represent the shape function
by a polynomial of z. Thus, for |t' - t { = At

1 = k-1
Iij(Z' W zi, t o tj) e Nl + sz + N322 + b e NkZ . (3"4)

The coefficients Nk's are to be determined by the continuity requirement
across element boundaries. Since the variational equation (2-2) involves
first spatial derivative, it is necessary to use a polynomial of at least
second order in order to meet the completeness and compatibility require-
ments for convergence. Thus we let

2
L -z €0 - 15) = Np + Npz + N2 (3-5)
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Figure 3-2. An Element with an Internal Node.

In order to determine Ny» N2 and N3 uniquely, we have to pick an internal
node in an element as shown in Figure 3-2, and require that

2
=Ny + Nz + Nz,

©-
—
1]

¢, = N, + sz2 + N3222 (3-6)

2
by = Ny + Nyzg + Nz,

or b

g N1 + sz1 + Naz

2
§ » 1=1,2,3

where ¢i is the nodal value of current at the ith node.
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?= We can write (3-6) in matrix notation as
-1
2
Ny LR %y L
s 2
N, = 1 z, z, ¢, (3-7)
2
N, 1 z, z, ¢y
After some matrix algebra manipulation we get
Ny 2,25(23-2,)  2323(2y-25)  2,2,(2,-24) \ fo,
E -L
f N, |2 ]Z[ (22-23)(zz+23) (za-zl)(z3+z]) (22'23)(22’23) ¢,
Ny (25-2,) (2,-25) (2,-2,) ¢y
(3-8)
where |Z| = (z,- 2, 1) 220 (3-9)
From (3-5) to (3-9 ) we obtain for an element connecting the ith and the
: (i + 1)t nodes
8 (2,2')(234972')  (212')(2449-2")
& Iy(2' -2, t'-ty) = o; + ¢, (3-10)
E (Zm‘z-j)(ziﬂ'zi) (Zi‘zm)(z1+]‘zm)
(zi-z')(zm—z')
ds
(25-243) Byrzga))
REY Sy u
-} where the subscript m denotes the internal node. Although the internal
‘ node can be placed at any position within the particular element, it is
&i usually located at the midpoint of that element.

3.2 Time Derivative and Integration Interpolation

Since the kernel of the variational integral equation (2-2) contains
also first time derivative, it is necessary to do temporal interpolation
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over adjacent time intervals. A second-order Lagrangian interpolation is
usually sufficient. Thus we let

Iij(z"zi’ t'-tj) = Iij(z"zi) U (t'-tj)

(t'-t5) ('t 5,)
(t5-t5 1) (tjq-t5.0)

= 1;5(z'-2)) $5,5-1

| (Emti ) (Ety)

¢i,j (3-11)
(tj_]‘tj)(tj+]'tj)
, (Ety ety
5,5+
(tJ 1 tJ+1)(t tJ+1)
- At 4 At
tj g St EHT

th th

where ¢ij represents the nodal current at the i“ node at the j~ time

interval.
To avoid extrapolation into the future, we have to interpolate the

current at the Jth time step backwards to the j-1 and j-2 time steps when

R

At < 0.5 such that

CEADICES
44,32
(t517ts0) (Etyp)

Iij(z'_zi’ t"tj) " Iij(z'-zi)

(3-12)
(t' 2)(t"t ) ¢ J—] + (t"tj_z)(t"tj_]) ¢1
TS O R PSR CORERIME
Equations (3-11) and (3-12) can be simply written as
g
Iij(z'-zi,t'-tj) = Iij(z"zi) ;E; Tn %in (3-13)
i
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n, = j+ cat

iy = Jj-2 R
lcht<05

B =3

T, is either given by (3-11) or (3-12). From (3-11) and (3-12) we can also
derive temporal derivative and integration as

n
2
3 il s J L
3tT [’15 g tj)] 3@ 2) ) Qb (3-14)
n=n1
and
N2
U ot v = . -
flij (B'-t)dt' = 1,,(2'-2,) D Dy 44, (3-15)
At n=n,

where Q. and D_ can be obtained easily from (3-11) and (3-12).
n n

3.3 Matrix Equation

Substitution of all the pertinent equations as derived above into
(2-2) yields the vth time step (i.e., t = vat).

N Ng

CDWWIID LN NN 2

i=] J:] AZ AZ

-2 . 2 ¢ E (z.t)) dz (3-16)
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Note that i and j are used to denote the i™" and j~ elements while k is
used to denote the kth retarded time interval. The actual time interval

is denoted by v. The summation 2: and 2: denote the summation process
L n
i

over the spatial and temporal interpolations as given by (3-10) and (3-13).

To cast (3-16) into a matrix equation we invoke the stationary prop-
erty of (3-16) by differentiating it with respect to each nodal current at
the vth time interval and setting the resulting equations equal to zero.

Thus

(3-17)
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The final form of (3-17) can be symbolically written as
i
[s] (¢4,) = (Ez I t=tv)+ (7 . (3-18)

where [S] denotes the system matrix whose coefficients are functions of
space and time. However its time dependence is the same for every time
interval (assumed uniform). Therefore, matrix inversion is required only
once. (F) denotes a known column vector containing information from pre-
vious computation.

The boundary condition imposed here is

;. =0 (3-19)

where i =1 and i = .

iv

3.4 Numerical Integration

By using the FEM, the integration over the entire wire is now
reduced to a summation of integration over the individual elements. The
integration in each element is carried out numerically by replacing the
integration by its Riemann sum with unit-weighting coefficient. That is,
if we divide the ith element into N subdivisions, we have

N
ff(z)dz = Zf(zj) Az (3-20)
A j=1
where A; = the domain of the ith element
Az = the size of a subdivision
zj = the z coordinates of the center of the
jth subdivision of the 1th element.

3.5 Matrix Inversion

Since the problem is solved as an initial-value problem, it is not
necessary to invert the matrix at each time step of solution. Matrix
inversion is done only once at the first time step and the inverted matrix
is stored to be used for the following-on time steps. Thus the solution
after the first time step can be written as

g8
(85,) = [s] [(ez | et * (r)] (3-21)
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4. COMPUTER PROGRAM

4.0 A BRIEF DESCRIPTION OF THE COMPUTER PROGRAM

The computer program developed for this study is called "TWFEM".
It is written in the Fortran IV language. The program consists of a main
program and four subroutines. The input to the programs are: the length
of the wire, the radius of the wire, the number of elements into which
the wire is divided, the size of the time step, the final time for the run,
the angle of incidence, the gaussian pulse width, the time at which the
gaussian incident field reaches its maximum, and a few control option
parameters for running the program. The output of the program is the cur-
rent distribution, the incident field strength and the segment excitation
on each node at each time step. Most of these outputs are stored on a
magnetic tape and can be saved for future use. Because of this, the pro-
gram can use the results of the final time step in a previous run as the
initial values for the new run. This capability is designed to save
computational time by eliminating duplicated computation. The numerical
integration is performed by a simple trapezoidal quadrature, and the

matrix inversion is done only once using the gaussian elimination algorithm.

To save computational time, many parameters are stored in common blocks.

4.1 Flow Chart

The structure of the computer program is given in a flow chart as
shown in Figure 4-1.
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5. RESULTS AND DISCUSSIONS

5.0 TRANSIENT CURRENTS

Figures 5-1 to 5-3 present the induced transient currents at the
center of a thin wire when illuminated by a unit gaussian pulse
(p =9 x 108 sec”!, e * 1 nsec) at angles of incidence & = 30°, 60°
and 90°. The length of the wire L, is .5 m and the shape factor
Q= 2n (%) = 10.02. The wire is divided into five elements with eleven
nodes (six external and five internal) and the time interval is taken to
be 0.167 nsec. The current is seen to oscillate at the lowest character-
istic frequency of the wire and decay in an exponential manner. The com-
parison between the FEM results and those obtained by using the method of
moments code[8] are shown in Figure 5-3. It is seen that extremely good
agreement is obtained between the current predictions by these two
approaches. Figure 5-4 shows similar results for a wire of 1 m length.
Again very good agreement is indicated between the FEM and the method of
moments. By making the wire thinner, i.e., larger Q, the current oscil-
lates at a slightly faster rate with smaller peaks. Figure 5-5 shows this
behavior.

As is obvious from the above figures, the time-dependent induced
currents on the wire depend on various factors including the incident
field's magnitude, direction of arrival, polarization, pulse width, wire
length and wire thickness. It is also interesting to note that the late
time oscillation of the current is determined by the fundamental resonance
frequency of the wire. It is also obvious that the current waveforms can
be considered as the superposition of damped sinusoids.

5.1 Current Distribution on the Entire Wire as a Function of Time

The current distribution over the entire length of the wire depends
on the instant of observation. Figures 5-6 through 5-19 show the instan-
taneous current distributions along the wire at different time intervals
ranging from t = 0.584 nsec to t = 7.097 nsec. The parameters used in
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the computation are L = 0.5 m, @ = 10.02, & = 30° and At = 0.167 nsec.

A careful examination of these plots shows the temporal development of the
current along the wire. First, the current starts to build up from the
end of the wire where the incident field pulse hits initially. As time
goes on, the other part of the wire is also illuminated and the current
pulse begins to travel with the velocity of propagation toward the other
end. When the current pulse reaches the other end (Figure 5-8) the cur-
rent pulse reverses its direction of propagation as the current cannot
flow forward any farther. This phenomenon goes on and on until the cur-
rent completely decays due to radiation loss.

Figures 5-20 through 5-33 show the snap shot type current distri-
butions on the wire for normal incidence at fourteen different instants.
Figure 5-23 shows the reverse polarity of the current distribution at
t = 2.087 nsec. As one should expect for normal incidence, the current
distributions display the symmetry with respect to the center of the wire.
As the time progresses (Figures 5-24 — 5-33) the current bounces back and
forth with decreasing amplitude but maintaining the symmetry. Ultimately,
the induced current will reradiate away.

5.2 Convergence and Computational Time

Figure 5-34 shows the convergence test for the current at the mid-
dle of a thin wire of length L = 0.5 m and @ = 10.023. The number of
elements used in the test are 3, 5 and 7 which correspond to 7, 11 and 15
nodes. It is seen that the numerical results show a better convergence
in late time than in early time. This is understandable, since in an ini-
tial-value problem the initial values are sensitive to the step size used,
and the step sizes used in this convergence test are chosen such that

CAt _ 1
8z
putational time for each run depends on the number of elements and the

» where At is the time step and Az is the element size. The com-

number of time steps used. A typical run in this study uses five ele-
ments (11 nodes) and 120 time steps and it takes about 100 sec on the

CDC 6500 machine. However, it must be noted that the computer program

has not been optimized to take into account various factors such as struc-
ture symmetry for the broadside illumination and possible analytical inte-
gration. Once this is done, the computational time can be reduced further.
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Figure 5-1.

Transient Current — Gaussian Pulse
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6. CONCLUSIONS AND RECOMMENDATIONS

In this study the finite element method for electromagnetic tech-
niques has been developed to solve transient scattering problems directly
in the time domain. The problem is formulated in terms of a variational
time-dependent integro-differential equation which is to be solved by a
finite difference scheme in time and a finite element technique in space.
Based on this approach a computer program is written to calculate the
transient current on thin-wire scatterers when excited by a plane wave
gaussian pulse. Numerical results show good accuracy and convergence for
the FEM approach. Thus, it transpires that the FEM can be a good numeri-
cal tool in solving transient electromagnetic problems. As a numerical
method for solving electromagnetic scattering problems, the FEM offers the
following advantages:

(1) Since the formulation is based on the variational princi-

ple, the solution is more stable and the error is minimized.

(2) Although the region is divided into finite elements, the
whole domain remains as a continuum because of the imposed
restriction on the continuity across element interfaces.
This is contrary to the point-matching solution used in
the method of moments where the true solution is valid
only at the matching points in the whole domain.

(3) FEM approach is particularly useful in handling complex

geometries.

In spite of its advantages, the FEM-based time-domain code developed
here has two shaortcomings from a numerical solution point of view. The
shortcomings are:

(1) The mathematical and bookkeeping aspects of the FEM are

involved, and

(2) The computational time seems to be longer as the code is
not optimized.

It is therefore hoped that further research work in this
area would alleviate these difficulties.
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To make this code more usable and application-oriented, it is
recommended that this code (a) be extended to arbitrarily-oriented wires
and other complex structures; (b) begeneralized to arbitrary incident

pulse; and (c) be optimized for more efficiency.
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